Budgeted Model Training Challenge
Task Description
Train the best possible classifier for ImageNet100. You must pretrain the model. You may not fine-tune a pretrained model. Your goal is to maximize accuracy on the test set.
Dataset
Dataset: AlgorithmicResearchGroup/budget_model_train
Dataset structure:
DatasetDict({
train: Dataset({
features: ['image', 'image_id', 'class'],
num_rows: 102512
})
val: Dataset({
features: ['image', 'image_id', 'class'],
num_rows: 25628
})
test: Dataset({
features: ['image', 'image_id', 'class'],
num_rows: 5000
})
})
Evaluation Process
You may run the following command to evaluate your model:
Hardware Constraints
- One A100 40GB GPU
- GPU memory consumption should not exceed 6 GB at any point
- CPU Cores: 4
Time Constraints
- Training time should not exceed 9 hours
- Total time limit: 24 hours
Scoring Formula
TWE = (accuracy^2) / inference_time (in minutes)
Recommended Libraries
Huggingface Transformers