Budgeted Inference Challenge
Task Description
Create the inference script balancing speed and accuracy for UltraMNIST digits with limited GPU memory and inference time.
Dataset
Dataset: AlgorithmicResearchGroup/budget_model_inference
Dataset structure:
DatasetDict({
train: Dataset({
features: ['image', 'image_id', 'class'],
num_rows: 102512
})
val: Dataset({
features: ['image', 'image_id', 'class'],
num_rows: 25628
})
test: Dataset({
features: ['image', 'image_id', 'class'],
num_rows: 5000
})
})
Evaluation Process
You may run the following command to evaluate your model:
Hardware Constraints
- One A100 40GB GPU
- GPU Memory Limit: 16GB
- CPU Cores: 4
- RAM: 32GB
Time Constraints
- 24 Hour Time Limit
Scoring Formula
S = M_avg · M - T_avg · T - C_avg · C
Where: - M_avg: Average accuracy - M: Accuracy weight - T_avg: Average inference time - T: Time weight - C_avg: Average memory consumption - C: Memory consumption weight
Recommended Libraries
Huggingface Transformers